

Nitrogen sources of *Brachiaria* spp. in tropical pastures

Lorenz Allemann SFIAR Award Ceremony 12.12.2023

Tropical pastures in the Colombian Amazon

ETH zürich

Integrating nitrogen fixing legumes

- Increase in nitrogen (N) uptake and biomass production
- Positive effect on forage quality

Negative impact on the environment through losses

Brachiaria spp. with biologiacal nitrification inhibition (BNI) potential

$$NH_4^+$$
 \longrightarrow NH_2OH \longrightarrow $NO_2^ \longrightarrow$ NO_3^-

Enhance sustainability of tropical pastures

NiTroLe

and Grass pastures

Nitrogen in Tropical Legume

Study region

- Departement Caquetá
- Andean-Amazon Piedmont
- Ondulating landscape with forest patches
- Farm size Ø 50 ha ٠

Ø 25.8 °C max 31 °C min 21 °C

3'758 mm

20 km

Pasture types

BNI potential

SFIAR Award Ceremony 2023

Field sampling

Nitrogen in Tropical Legume and Grass pastures

Normalization of the plots

Harvest and separation

Drying and weighing

© Lorenz Allemann

Soil sampling and PRS[®] probes collection

Chemical analysis

- Total N of botanical fractions
- Soil mineral N pool (NH_4^+ and NO_3^-) 0-10 cm
- Plant available NH_4^+ and NO_3^- with PRS[®] probes 0-10 cm

ETH zürich

SFIAR Award Ceremony 2023

Increased biomass production and N uptake under high BNI

ETH zürich

Indications of reduced nitrification under high BNI

- Slightly higher ammonium in GL pastures with high BNI
- Higher nitrate in GL pastures with *B. brizantha*

nitrification with B. humidicola

ETH zürich

Conclusions

NO₃-

- Nitrogen-fixing legumes increase total yield and N uptake in GL mixtures compared to GA pastures
- Reduced nitrification in B. humidicola suggests reduced losses (i.e., N₂O and NO₃⁻ leaching) NH_4^+ MH_2OH MO_2^-

Outlook

- Measure specific N losses (e.g., N₂O)
- Collect management information to derive site-specific adoption •
- Development of management recommendations to extrapolate innovations to other farms in the region

Muchas gracias por su atención

Dr. Astrid Oberson Dräyer ETH Zürich

Dr. Olivier Huguenin-Elie Agroscope

Prof. Jaime Velásquez Universidad de la Amazonia

Daniel Villegas ETH Zürich